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Abstract We generalize a small-energy expansion for one-dimensional quantum-
mechanical models proposed recently by other authors. The original approach was
devised to treat symmetric potentials and here we show how to extend it to non-
symmetric ones. Present approach is based on matching the logarithmic derivatives
for the left and right solutions to the Schrödinger equation at the origin (or any other
point chosen conveniently). As in the original method, each logarithmic derivative can
be expanded in a small-energy series by straightforward perturbation theory. We test
the new approach on four simple models, one of which is not exactly solvable. The
perturbation expansion converges in all the illustrative examples so that one obtains
the ground-state energy with an accuracy determined by the number of available
perturbation corrections.

Keywords One-dimensional Schrödinger equation · Small-energy series ·
Convergence · Finite wells · Anharmonic oscillator

1 Introduction

In a recent paper Bender and Jones [1] proposed a convergent perturbation series
for the calculation of the eigenvalues of the Schrödinger equation in one dimension.
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The approach consists of the expansion of the eigenfunction as a power series of the
energy E itself and the construction of a function f (E) that vanishes when E = 0
and increases monotonically till f (E0) = 1, where E0 is the lowest eigenvalue. This
strategy is based on the fact that the eigenfunction ψ ′(x, E) satisfies ψ(0, E0) = 0 in
the case of symmetric potentials V (−x) = V (x). By means of a suitable modification
of this approach the authors were also able to treat parity-time invariant Hamiltonians
with one-dimensional complex potentials that satisfy V (−x)∗ = V (x). The method
is not restricted to the ground state; the zeros of the Padé approximants for the small-
energy expansion of f (E) − 1 are estimates of the energies of the excited states [1].

The purpose of this paper is to extend the approach proposed byBender and Jones to
non-symmetric potentials. To this end, in Sect. 2wederive themethod in amore general
way focussing on the logarithmic derivative of the eigenfunction. In Sect. 3 we briefly
consider an exactly-solvable symmetric potential bounded from below and above. The
reason for including such an example in the present paper is that Bender and Jones only
considered problems with an infinite number of bound states. In Sect. 4 we discuss
an exactly-solvable finite non-symmetric well and illustrate the application of the
generalized perturbation method. In Sect. 5 we consider three non-symmetric infinite
wells, one of which is not exactly solvable. Two of them are non-symmetric versions
of the problems discussed by Bender and Jones. Finally, in Sect. 6 we summarize the
main results of the paper and draw conclusions.

2 The method

Consider the dimensionless one-dimensional Schrödinger equation

ψ ′′(x, E) = [V (x) − E]ψ(x, E), (1)

where V (x) is bounded from below. The solution satisfies the boundary conditions

lim|x |→∞ ψ(x, E) = 0, (2)

when E is one of the bound-state eigenvalues E0 < E1 < . . .. If E is not exactly one
of those eigenvalues then ψ(x, E) can satisfy at most one of the boundary conditions.

Suppose, for example, that ψ(x, E) satisfies the right boundary condition

lim
x→∞ ψ(x, E) = 0, (3)

for an arbitrary value of E . Let ψ0(x) = ψ(x, 0) be a solution to Eq. (1) that satisfies
the same boundary condition (3) for E = 0. The function φ(x, E) defined by

ψ(x, E) = ψ0(x)φ(x, E), (4)

satisfies φ(x, 0) ≡ 1 and enables us to reduce the Schrödinger Eq. (1) to the simpler
form (

ψ2
0φ′)′ = −Eψ2

0φ. (5)
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If we expand φ(x, E) in a Taylor series about E = 0

φ(x, E) =
∞∑
j=0

φ j (x)E
j , (6)

where φ0(x) = φ(x, 0) ≡ 1, then we can easily obtain the coefficients φ j (x) of this
perturbation expansion iteratively from Eq. (5) as:

(
ψ2
0φ′

j

)′ = −ψ2
0φ j−1, j = 1, 2, . . . . (7)

ThemethodofBender and Jones [1] applies to symmetric potentialsV (−x) = V (x)
for whichψ(−x, En) = (−1)nψ(x, En). In this case the logarithmic derivative of the
solution

L(x, E) = ψ ′(x, E)

ψ(x, E)
= L(x, 0) + φ′(x, E)

φ(x, E)
, (8)

satisfies L(0, E0) = 0 so that the function

f (E) = 1 − L(0, E)

L(0, 0)
= − φ′(0, E)

L(0, 0)φ(0, E)
(9)

increases monotonically from f (0) = 0 to f (E0) = 1 [1]. It follows from Eq. (6) that
this function can be expanded in the small-energy series

f (E) =
∞∑
j=1

c j E
j . (10)

Since ψ(0, E1) = 0 both L(0, E) and f (E) are singular at E = E1 and the radius of
convergence of the small-energy series cannot be greater than E1 (the case in which
V (x) supports just one bound state will be discussed later on in Sect. 3).

The calculation of the perturbation coefficients c j can be greatly simplified by
choosing a convenient normalization condition. For example, if we chooseψ(0, E) =
ψ0(0) = 1 then φ(0, E) = 1 and

f (E) = −φ′(0, E)

ψ ′
0(0)

, (11)

so that

c j = − φ′
j (0)

ψ ′
0(0)

. (12)

Obviously we can obtain E0 as a root of either f (E0) = 1 or L(0, E0) = 0, where

L(0, E) = ψ ′
0(0) + φ′(0, E). (13)
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This function can also be expanded in a small-energy series

L(0, E) =
∞∑
j=0

L j E
j ,

L0 = ψ ′
0(0), L j = φ′

j (0), j > 0 (14)

In the more general case of a non-symmetric potential V (−x) �= V (x) we need the
left ψ(L)(x, E) and right ψ(R)(x, E) solutions to the Schrödinger Eq. (1) that satisfy

lim
x→−∞ ψ(L)(x, E) = 0

lim
x→∞ ψ(R)(x, E) = 0. (15)

We also need the corresponding reference solutions, or solutions of order zero,
ψ

(L)
0 (x) = ψ(L)(x, 0) and ψ

(R)
0 (x) = ψ(R)(x, 0) that satisfy similar left and right

boundary conditions, respectively. In this case it is also useful to choose the normal-
ization conditions ψ(L ,R)(x0, E) = ψ

(L ,R)
0 (x0) = 1 at a convenient coordinate point

x0.
The left and right logarithmic derivatives

LL(x, E) = ψ ′(L)(x, E)

ψ(L)(x, E)

LR(x, E) = ψ ′(R)(x, E)

ψ(R)(x, E)
, (16)

match at x = x0 if and only if E is one of the bound-state eigenvalues:

LR(x0, En) − LL(x0, En) = 0. (17)

If we define φ(L)(x, E) and φ(R)(x, E) by

ψ(L ,R)(x, E) = ψ
(L ,R)
0 (x)φ(L ,R)(x, E), (18)

then the left and right logarithmic derivatives become

LL ,R(x0, E) = ψ
′(L ,R)
0 (x0) + φ′(L ,R)(x0, E). (19)

The perturbation approach is similar to the one outlined above; we simply expand

φ(L ,R)(x, E) =
∞∑
j=0

φ
(L ,R)
j (x)E j , (20)
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where φ
(L ,R)
0 (x) ≡ 1, and obtain the perturbation corrections φ

(L ,R)
j (x) from two

equations similar to (7). Straightforward integration leads to

φ(L)
n (x) =

∫ x0

x

ds

ψ
(L)
0 (s)2

∫ s

−∞
dt ψ(L)

0 (t)2φ(L)
n−1(t)

φ(R)
n (x) =

∫ x

x0

ds

ψ
(R)
0 (s)2

∫ ∞

s
dt ψ(R)

0 (t)2φ(R)
n−1(t), (21)

that provide the perturbation corrections iteratively for n = 1, 2, . . . starting from
φ

(L ,R)
0 (x) ≡ 1. The second expression is identical to the one derived by Bender and

Jones for the symmetric case.
Sinceψ

(L)
0 (x) andψ

(R)
0 (x)decay to the left and right, respectively, thenψ

′(L)
0 (x0) >

0 and ψ
′(R)
0 (x0) < 0. On the other hand, since φ

′(L)
n (x0) < 0 and φ

′(R)
n (x0) > 0 we

conclude that LL(x0, E) and LR(x0, E) are monotonically decreasing an increasing,
respectively, matching at E = E0.

3 Finite symmetric well

Bender and Jones studied several symmetric wells that are unbounded from above and
therefore support an infinite number of bound states. Although the aim of this paper
is the application of the small-energy expansion to non-symmetric potentials we first
consider symmetric wells bounded from below and above. Without loss of generality
we assume that 0 ≤ V (x) ≤ VR . It is well-known that such a potential supports a
bound state no matter how small the well depth VR . If there is only one bound state,
then the singularity of f (E) closest to the origin in the complex E plane cannot be an
excited state. This is the main reason for discussing such symmetric wells here.

The simplest exactly-solvable model is given by

V (x) =
{
0, |x | < 1
VR > 0, |x | > 1

. (22)

A straightforward calculation yields the logarithmic derivative at the origin

L(0, E) =
√
E

(√
E sin

(√
E

)
− √

VR − E cos
(√

E
))

√
E cos

(√
E

)
+ √

VR − E sin
(√

E
) , (23)

that can be expanded in the E-series
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Table 1 Bound-state eigenvalue
of the symmetric well (22) of
depth VR = 1 estimated by
means of the expansion (24) of
order n. The exact result is
E0 = 0.5462468341

n E0

4 0.5855444198

8 0.5516251660

12 0.5472622152

16 0.5464638914

20 0.5462964250

24 0.5462586560

28 0.5462497386

32 0.5462475642

36 0.5462470210

40 0.5462468826

44 0.5462468468

48 0.5462468375

52 0.5462468350

56 0.5462468344

60 0.5462468343

64 0.5462468341

L(0, E) = −
√
VR√

VR + 1
+

(
2V 3/2

R + 6VR + 6
√
VR + 3

)
E

6
√
VR

(√
VR + 1

)2

+
(
8VR

3 + 48V 5/2
R +120VR

2+180V 3/2
R + 180VR + 135

√
VR + 45

)
E2

360V 3/2
R

(√
VR + 1

)3
+ . . . , (24)

which clearly shows that it is monotonically increasing. Its radius of convergence is
determined by E = VR > E0 so that the perturbation expansion will enable us to
obtain the lowest eigenvalue E0 with arbitrary accuracy. For example, Table 1 shows
the rate of convergence of the approximate eigenvalue estimated from the expansion
( 24) for VR = 1.

4 Finite non-symmetric well

As a first illustrative example of non-symmetric potential we choose the exactly-
solvable finite well

V (x) =
⎧⎨
⎩
VL > 0, x < −1
0, |x | < 1
VR > 0, x > 1

. (25)
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The exact logarithmic derivatives at the origin

LL(0, E) =
√
E

(√
VL − E cos

(√
E

)
− √

E sin
(√

E
))

√
E cos

(√
E

)
+ √

VL − E sin
(√

E
)

LR(0, E) =
√
E

(√
E sin

(√
E

)
− √

VR − E cos
(√

E
))

√
E cos

(√
E

)
+ √

VR − E sin
(√

E
) , (26)

can be expanded as

LL (0, E) =
√
VL√

VL + 1
−

(
2V 3/2

L + 6VL + 6
√
VL + 3

)
E

6
√
VL

(√
VL + 1

)2

−
(
8VL

3 + 48V 5/2
L + 120VL

2 + 180V 3/2
L + 180VL + 135

√
VL + 45

)
E2

360V 3/2
L

(√
VL + 1

)3 + . . .

LR(0, E) = −
√
VR√

VR + 1
+

(
2V 3/2

R + 6VR + 6
√
VR + 3

)
E

6
√
VR

(√
VR + 1

)2

+
(
8VR

3 + 48V 5/2
R + 120VR

2 + 180V 3/2
R + 180VR + 135

√
VR + 45

)
E2

360V 3/2
R

(√
VR + 1

)3
+ . . . . (27)

Figure 1 shows LL(0, E) and LR(0, E) when VL = 2 and VR = 1. These curves
intersect at the ground-state energy as argued above. For such values of the potential
parameters there is just one bound state. Table 2 shows the rate of convergence of
the estimated lowest eigenvalue obtained from the intersection of the series (27) for
increasing truncation order.

5 Infinite wells

As an extension of themodel with the linear symmetric potential V (x) = |x | discussed
by Bender and Jones we consider its non-symmetric version

V (x) =
{−aL x, x < 0
aRx, x > 0

, (28)
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Fig. 1 LR(0, E) and LL (0, E) for the non-symmetric well (25) with VL = 2 and VR = 1

Table 2 Bound-state eigenvalue
of the non-symmetric well (25)
with VL = 2 and VR = 1
estimated by means of the
expansions of LR(0, E) and
LL (0, E). The exact result is
E0 = 0.6446113612

n E0

4 0.8367722372

8 0.6634864161

12 0.6487132635

16 0.6457463863

20 0.6449609259

24 0.6447254502

28 0.6446499927

32 0.6446247871

36 0.6446161202

40 0.6446130747

44 0.6446119860

48 0.6446115915

52 0.6446114469

56 0.6446113933

60 0.6446113734

64 0.6446113658

68 0.6446113630

72 0.6446113618

76 0.6446113615

80 0.6446113614

84 0.6446113614

88 0.6446113612
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where aL , aR > 0. In this case we have

LL(0, E) = −
a1/3L A′

i

(
−E/a2/3L

)

Ai

(
−E/a2/3L

)

LR(0, E) =
a1/3R A′

i

(
E/a2/3R

)

Ai

(
E/a2/3R

) , (29)

where Ai (z) is an Airy function [2].
In order to carry out a sample calculation we choose aR = 1 and aL = 2 and obtain

the series

LL(0) = 0.9184964715 − 0.4218178838 E − 0.05628088100 E2

− 0.01242379097 E3 − 0.003082268481 E4 + . . .

LR(0) = − 0.7290111325 + 0.5314572310 E + 0.1125617620 E2

+ 0.03944307773 E3 + 0.01553365974 E4 + . . . . (30)

The singularities of LL(0, E) and LR(0, E) for this particular choice of potential para-
meters are located at E = 3.711514163 and E = 2.338107410, respectively. Since
both are larger than E0 the perturbation expansions (30) are suitable for the calculation
of this eigenvalue with arbitrary accuracy. Table 3 shows the rate of convergence of
the approach for the lowest eigenvalue E0.

As a non-symmetric extension of the harmonic oscillator discussed by Bender and
Jones we consider the potential

V (x) =
{
aL x2, x < 0
aRx2, x > 0

, (31)

where aL , aR > 0. In this case we have

LL(0) = √
2a1/4L

D(E+√
aL )/(2

√
aL )(0)

D(E−√
aL )/(2

√
aL )(0)

LR(0) = −√
2a1/4R

D(E+√
aR)/(2

√
aR)(0)

D(E−√
aR)/(2

√
aR)(0)

, (32)

where Dν(z) is a parabolic cylinder function [2].
For aL = 2 and aR = 1 we have the small-energy expansions

LL (0) = 0.8038781325 − 0.4464420544 E − 0.06011306588 E2 − 0.01251356963 E3

− 0.002831976530 E4 + . . .

LR(0) = −0.6759782395 + 0.5309120676 E + 0.1010977236 E2 + 0.02976245185 E3

+ 0.009525595408 E4 + . . . , (33)
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Table 3 Lowest eigenvalue of
the non-symmetric linear well
(28) with aL = 2 and aR = 1
estimated by means of the
expansions of LR(0, E) and
LL (0, E). The exact result is
E0 = 1.250207832

n E0

2 1.387352237

4 1.275507151

6 1.256485215

8 1.251913598

10 1.250686548

12 1.250343776

14 1.250246604

16 1.250218907

18 1.250210997

20 1.250208737

22 1.250208091

24 1.250207905

26 1.250207854

28 1.250207837

30 1.250207833

32 1.250207832

Table 4 Lowest eigenvalue of
the non-symmetric quadratic
well (31) with aL = 2 and
aR = 1 estimated by means of
the expansions of LR(0, E) and
LL (0, E). The exact result is
E0 = 1.176933152

n E0

2 1.254541164

4 1.185370810

6 1.178091246

8 1.177102981

10 1.176958699

12 1.176937027

14 1.176933737

16 1.176933265

18 1.176933166

for the left and right solutions, respectively. Table 4 shows the convergence of the
series for the lowest eigenvalue of the non-symmetric quadratic well (31) estimated
from the truncated small-energy series (33).

Finally, we consider the Schrödinger Eq. (1) with the non-symmetric anharmonic
potential

V (x) = x4 + λx3, (34)

that is not exactly solvable. Note that the minimum of the potential-energy function
Vmin = V (xmin) is not located at the origin but at xmin = −3λ/4 and that V (0) = 0 >

Vmin = −27λ4/256 does not agree with the assumption made above. However, that
arbitrary assumption was made for simplicity and is unnecessary for the application
of the approach.
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Fig. 2 LR(0, E) and LL (0, E) for the non-symmetric anharmonic oscillator (34) with λ = 1

In this case we do not attempt to calculate the small-energy series for the left
and right logarithmic derivatives and instead obtain LL(0, E) and LR(0, E) quite
accurately by means of a variant of the Riccati-Padé method (RPM) [3].

The logarithmic derivative (8) can be expanded in a Taylor series about x = 0

L(x, E) =
∞∑
j=0

g j x
j , (35)

where the coefficients g j , j > 0, depend on both g0 and E . The Hankel determinants

Hd
D(E, g0) = ∣∣gi+ j+d−1

∣∣D
i, j=1, where D = 2, 3, . . . is the determinant dimension

and d = 0, 1, . . ., are polynomial functions of g0 and E . For a given value of E the
RPM condition Hd

D(E, g0) = 0 yields sequences of roots g[D,d]
0 (E), D = 2, 3, . . .

that converge towards LL(0, E) and LR(0, E). For each value of E the RPM yields
both LL(0, E) and LR(0, E) simultaneously as limits of two sequences of roots of
the same sequence of Hankel determinants.

For concreteness we restrict ourselves to λ = 0.1 that is sufficiently small to expect
LL(0, E0) = LR(0, E0) = L(0, E0) to be close to zero. Figure 2 shows that the
left and right logarithmic derivatives approach each other (from above and below,
respectively) as E increases from E = 0 and intersect at E0 as expected. In this
straightforward application of the RPM we simply chose d = 0 and 2 ≤ D ≤ 15.

We can also calculate the value of E0 quite accurately by means of the standard
RPM that is based on pairs of Hankel determinants Hd,e

D (E, g0) = ∣∣g2i+2 j+2d−2
∣∣D
i, j=1

and Hd,o
D (E, g0) = ∣∣g2i+2 j+2d−1

∣∣D
i, j=1 [3]. In this case, sequences of roots of the set of

nonlinear equations
{
Hd,e
D (E, g0) = 0, Hd,o

D (E, g0) = 0
}
converge towards E0 and

L(0, E0). For λ = 0.1 we obtain

E0 = 1.0590028460380260258

LL(0, E0) = LR(0, E0) = −0.02652946094577843397, (36)
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that agree with the intersection shown in Fig. 2. Here we chose the same values of D
and d indicated previously.

6 Conclusions

The aim of this paper is the generalization of the method of Bender and Jones so that
it can be applied to non-symmetric potentials. Present approach consists of matching
the logarithmic derivatives of the left and right solutions at a chosen coordinate point.
The matching procedure itself is well known but here it is combined with the original
idea of the small-energy series proposed by those authors. The series are convergent as
in the case of the symmetric potentials studied earlier. It is worth noting that the same
procedure applies to symmetric potentials but in this case it is not necessary to carry
out both calculations because the two curves LL(0, E) and LR(0, E) are symmetric
with respect to the E axis and intersect at L(0, E0) = 0.

As illustrative examples we explicitly considered three exactly solvable models and
a nontrivial anharmonic oscillator. In the latter case we did not derive the small-energy
series that should have been carried out in an entirely numerical way and restricted
ourselves to the accurate calculation of the two logarithmic derivatives at origin by
means of the RPM. In this way we showed that the two curves intersect at the ground-
state energy that we also calculated accurately by means of another version of the
RPM.
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